
1 Introduction

In LDAvis, we visualize the fit of an LDA topic model to a corpus of documents. The data
and model are described as follows:

Data:

� D documents in the corpus

� nd tokens in document d, for d = 1...D (denoted doc.length in our package’s R code)

� N =
∑

d nd total tokens in the corpus

� W terms in the vocabulary

� Mw is defined as the frequency of term w across the corpus, where
∑

w Mw = N
(denoted term.frequency in our package’s R code)

Model:

� K topics in the model

� For document d = 1...D, the length-K topic probability vector, θd, is drawn from a
Dirichlet(α) prior, where αk > 0 for topics k = 1...K.

� For topic k = 1...K, the length-W term probability vector, ϕk, is drawn from a
Dirichlet(β) prior, where βw > 0 for terms w = 1...W .

� The probability model states that for the jth token from document d, a latent topic,
zdj, is drawn, where P(zdj = k) = θdk for document d = 1...D, token j = 1...nd, and
topic k = 1...K.

� Then, the jth token from the dth document, Ydj, is drawn from the vocabulary of terms
according to P(Ydj = w | zdj) = ϕ(zdj ,w), for document d = 1...D, token j = 1...nd, and
term w = 1...W .

A number of algorithms can be used to fit an LDA model to a data set. Two of the most
common are the collapsed Gibbs sampler (Griffiths and Steyvers, 2004) and variational Bayes
(Blei et al 2003).

Our interactive visualization tool, LDAvis, requires five input arguments:
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1. ϕ, the K ×W matrix containing the estimated probability mass function over the W
terms in the vocabulary for each of the K topics in the model. Note that ϕkw > 0 for
all k ∈ 1...K and all w ∈ 1...W , because of the priors. (Although our software allows
values of zero due to rounding). Each of the K rows of ϕ must sum to one.

2. θ, the D ×K matrix containing the estimated probability mass function over the K
topics in the model for each of the D documents in the corpus. Note that θdk > 0 for
all d ∈ 1...D and all k ∈ 1...K, because of the priors (although, as above, our software
accepts zeroes due to rounding). Each of the D rows of θ must sum to one.

3. nd, the number of tokens observed in document d, where nd is required to be an integer
greater than zero, for documents d = 1...D. Denoted doc.length in our code.

4. vocab, the length-W character vector containing the terms in the vocabulary (listed
in the same order as the columns of ϕ).

5. Mw, the frequency of term w across the entire corpus, where Mw is required to be an
integer greater than zero for each term w = 1...W . Denoted term.frequency in our
code.

In general, the prior parameters α and β are specified by the modeler (although in some
cases they are estimated from the data), nd and Mw are computed from the data, and the
algorithm used to fit the model produces point estimates of ϕ and θ. When using the
collapsed Gibbs sampler, we recommend using equations 6 and 7 from Griffiths and Steyvers
(2004) to estimate ϕ and θ. These are the “smoothed” estimates of the parameters that
incorporate the priors, rather than, for example, the matrices containing the counts of topic
assignments to each document and term, which are a common output of Gibbs Sampler
implementations that don’t necessarily incorporate the priors. Two popular packages for
fitting an LDA model to data are the R package lda (Chang, 2012) and the JAVA-based
standalone software package MALLET (McCallum, 2002). Our package contains an example
of using the lda package to fit a topic model to a corpus of movie reviews, available in the
inst/examples/reviews directory of LDAvis.

2 Definitions of visual elements in LDAvis

Here we define the dimensions of the visual elements in LDAvis. There are essentially four
sets of visual elements that can be displayed, depending on the state of the visualization.
They are:

1. Default Topic Circles: K circles, one to represent each topic, whose areas are set
to be proportional to the proportions of the topics across the N total tokens in the
corpus. The default topic circles are displayed when no term is highlighted.
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2. Red Bars: K×W red horizontal bars, each of which represents the estimated number
of times a given term was generated by a given topic. When a topic is selected, we
show the red bars for the R most relevant terms for the selected topic, where R = 30
by default (see Sievert and Shirley (2014) for the definition of relevance).

3. Blue Bars: W blue horizontal bars, one to represent the overall frequency of each
term in the corpus. When no topic is selected, we display the blue bars for the R most
salient terms in the corpus, and when a topic is selected, we display the blue bars for
the R most relevant terms. See Chuang et al. (2012) for the definition of the saliency
of a term in a topic model.

4. Topic-Term Circles: K × W circles whose areas are set to be proportional to the
frequencies with which a given term is estimated to have been generated by the topics.
When a given term, w, is highlighted, the K default circles transition (i.e. their areas
change) to the K topic-term circles for term w.

Let’s define the dimensions of these visual elements:

1. The area of the Default Circle for topic k, Adefault
k , is set to be proportional to

Nk/
∑

k Nk, where Nk is the estimated number of tokens that were generated by topic
k across the entire corpus. The formula for Nk is:

Nk =
D∑

d=1

θdknd.

It is straightforward to verify that
∑

k Nk = N .

2. The width of the Red Bar for topic k and term w, denoted Pkw, is set to ϕkw × Nk

for all topics k = 1...K and terms w = 1...W .

3. The width of theBlue Bar for term w is set to
∑

k Pkw, the total number of occurrences
of term w in the corpus (note that prior to version 0.3.2 of LDAvis, this width was set
to Mw, the user-supplied frequency of term w across the entire corpus).

4. The area of the Topic-Term Circle for term w and topic k, denoted Atopic-term
kw , is set

to be proportional to Pkw/
∑

k Pkw.

3 Discussion

Here we point out a few things about LDAvis:
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1. Note that the all the visual elements represent frequencies (of various things in the
training data), rather than conditional probabilities. For example, the area of topic-
term circle Atopic-term

kw could have been set to be proportional to ϕkw/
∑

k ϕkw, but
instead we set it to be proportional to Pkw/

∑
k Pkw. So, suppose the term “foo” had

a 0.003 probability under, say, topic 20 and topic 45, and negligible probability under
all other topics. One might expect that upon highlighting “foo”, the topic-term circles
would all disappear except for two equal-area topic-term circles representing topics 20
and 45. Instead, if, for example, topic 20 occurred twice as frequently as topic 45, then
the topic-term circle for topic 20 would be twice as large as that for topic 45 upon
“foo” being highlighted. This reflects the fact that 2/3 of the occurrences of “foo”
in the training data were estimated to have come from topic 20. In other words, we
reflect the underlying (and potentially variable) frequencies of the topics themselves
when we compute the areas of the topic-term circles.

The same principle holds for the red bars and blue bars – they visualize frequencies,
rather than proportions, so that wider bars signify more frequent terms in the training
data. We felt this was an important feature of the data to visualize, rather than building
a visualization that simply displayed aspects of ϕ and θ, which are normalized, and
don’t reflect the frequencies of the terms and topics in the data.

2. By default, we set the dimensions of the left panel to be 530 x 530 pixels, and we set
the sum of the areas of the default topic circles and the topic-term circles to be 5302/4,
so that these circles cover at most 1/4 of the panel (in practice, because of overlapping
circles, they cover less than 1/4 of the area of the panel). Likewise, the sum of the
areas of the topic-term circles is set to be 1/4 of the area of the left panel of the display.
This way the visualization looks OK for a range of numbers of topics, from roughly
10 ≤ K ≤ 100.

3. The centers of the default topic circles are laid out in two dimensions according to
a multidimensional scaling (MDS) algorithm that is run on the inter-topic distance
matrix. We use Jensen-Shannon divergence to compute distances between topics, and
then we use the cmdscale() function in R to implement classical multidimensional
scaling. The range of the first coordinate (along the x-axis) is not necessarily equal
to that of the second coordinate (along the y-axis); thus we force the aspect ratio to
be 1 to preserve the MDS distances. In practice (across the examples we’ve seen), the
ranges of the x and y coordinates are within about 10% of each other.
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