Package: LDAvis 0.3.5
LDAvis: Interactive Visualization of Topic Models
Tools to create an interactive web-based visualization of a topic model that has been fit to a corpus of text data using Latent Dirichlet Allocation (LDA). Given the estimated parameters of the topic model, it computes various summary statistics as input to an interactive visualization built with 'D3.js' that is accessed via a browser. The goal is to help users interpret the topics in their 'LDA' topic model.
Authors:
LDAvis_0.3.5.tar.gz
LDAvis_0.3.5.zip(r-4.5)LDAvis_0.3.5.zip(r-4.4)LDAvis_0.3.5.zip(r-4.3)
LDAvis_0.3.5.tgz(r-4.4-any)LDAvis_0.3.5.tgz(r-4.3-any)
LDAvis_0.3.5.tar.gz(r-4.5-noble)LDAvis_0.3.5.tar.gz(r-4.4-noble)
LDAvis_0.3.5.tgz(r-4.4-emscripten)LDAvis_0.3.5.tgz(r-4.3-emscripten)
LDAvis.pdf |LDAvis.html✨
LDAvis/json (API)
NEWS
# Install 'LDAvis' in R: |
install.packages('LDAvis', repos = c('https://cpsievert.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cpsievert/ldavis/issues
- TwentyNewsgroups - Twenty Newsgroups Data
javascripttext-miningtopic-modelingvisualization
Last updated 7 years agofrom:5067f7b847. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win | OK | Nov 09 2024 |
R-4.5-linux | OK | Nov 09 2024 |
R-4.4-win | OK | Nov 09 2024 |
R-4.4-mac | OK | Nov 09 2024 |
R-4.3-win | OK | Nov 09 2024 |
R-4.3-mac | OK | Nov 09 2024 |
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Create the JSON object to read into the javascript visualization | createJSON |
Dimension reduction via Jensen-Shannon Divergence & Principal Components | jsPCA |
Create an LDAvis output element | renderVis |
Run shiny/D3 visualization | runShiny |
View and/or share LDAvis in a browser | serVis |
Twenty Newsgroups Data | TwentyNewsgroups |
Shiny ui output function | visOutput |